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Abstract. The collisional excitation of the lower vibrational levels of H2(
1Σ+

g ) molecules by low-energy
electron impact is computed using an empirical model potential and by solving the coupled-channels scat-
tering equations within a space-fixed (SF) frame of reference formulation. Numerically converged partial,
integral inelastic and elastic cross-sections are obtained from what is an essentially exact treatment of the
dynamics and the results are compared with measurements and with earlier calculations on the same sys-
tem. The usefulness of the SF method for handling excitation processes at near-threshold collision energies
is discussed and analyzed through the calculations of collisional superelastic partial cross-sections down to
10−2 meV of collision energy.

PACS. 34.80.Bm Elastic scattering of electrons by atoms and molecules – 34.80.-i Electron scattering

1 Introduction

The study of the low-energy scattering of electron beams
off gaseous molecules provides a great variety of experi-
mental outcomes that turn out to be of relevance in a cor-
respondingly broad range of chemistry and physics areas
of study, from astrophysical processes initiated by photo-
electrons in the interstellar medium to chemical reactions
that follow ionization by discharge in the gaseous molec-
ular mixture [1–3]. Thus, to be able to establish a reliable
set of scattering observables for an increasingly broader
range of molecular targets which are of relevance in so
many areas has indeed provided the motivation for a great
deal of experimental work [4,5].

The corresponding theoretical analysis of such observ-
ables, either along series of similar molecules to estab-
lish possible patterns of behaviour, or focussing on a par-
ticular target gas to evaluate several types of inelastic
cross-sections, integral and differential, within a specific
medium, has been challenged to produce a similarly broad
range of data for a great variety of molecular gases and to
achieve in the evaluation of the relevant scattering observ-
ables a comparable level of accuracy and reliability [6].

A case in point is provided by the analysis of the very
impressive set of data which have been gathered about
molecular hydrogen, one of the most abundant molecules
in our planetary system and in the interstellar medium.

a Present address: Faculty of Applied Physics and Math-
ematics, Technical University of Gdaǹsk, 80952 Gdaǹsk,
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Apart from the extensive review of the existing data pub-
lished a while ago [4], there has been a more specific
analysis of such data on H2 [7] dealing chiefly with ex-
citation cross-sections, while a set of recommended cross-
sections for elastic and inelastic processes has been given
in reference [8]. On the theoretical side, a recent review
by Morrison et al. [9] provides an extensive summary of
the comparison between experiments and theory in the
low-energy regimes, focussing on rovibrational excitation
processes. Finally, a very recent presentation and critical
comparison of all the existing data for molecular hydro-
gen, together with many other diatomic molecules, has
been excellently compiled by Brunger et al. [12] just a
couple of years ago.

Further progress of the research in recent years has
been provided by the study of very-low energy electron
collisions with gaseous molecules [10,11], where the corre-
sponding theoretical analysis of the dynamics inevitably
requires one to treat correctly the coupling between inter-
nal rovibrational motion and that of the impinging elec-
tron [6], i.e. to proceed beyond the more approximate
Body-Fixed (BF) analysis of the energy transfer processes
that is known to be realistic at collision energies well above
the corresponding thresholds [9]. The full, coupled chan-
nel treatments of the above processes, however, poses se-
rious convergence problems on the numerical side and has
rarely been carried out explicitly to full convergence by
the earlier computational studies [1,2]

The object of the present study is therefore that of re-
visiting what has been found for the vibrationally inelastic
processes at low scattering energies in the case of e−–H2
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collisions in the gas phase and to carry out a numeri-
cally converged study of the lower vibrationally inelas-
tic, rotationally summed, partial integral cross-sections by
solving the scattering quantum problem exactly within a
space-fixed (SF) reference frame representation of the cor-
responding Coupled Channels (CC) equations. In partic-
ular, we intend to employ a recently implemented form
of the above equations [13] where use is made of a modi-
fied formulation of the Variable Phase (VP) treatment of
the dynamics [14] within the multichannel situation of a
molecular system.

What we report in the following, therefore, is not in-
tended to provide an exhaustive comparison with all the
many results on H2 already obtained through the enor-
mous literature of the last 30 years, but rather a proof-
of-principle on the use of a converged SF treatment with
model interaction to obtain, at the energies where experi-
ments and calculations already exist, good agreement with
those findings. Such an agreement should therefore bode
well for the intended extensions of the present method
down to energies very close to rovibrational thresholds
(where the SF approach becomes indispensable) which we
shall test here only in a preliminary way while further
extensions to other systems at lower energies will be pre-
sented elsewhere. In the following section, we therefore
summarize first our theoretical approach and further de-
scribe more in detail our numerical implementation of it.
Section 3 reports and discusses the present results while
Section 4 summarizes our conclusions.

2 The theoretical formulation

2.1 The quantum dynamics

In the case of the small distorsions which are induced into
the target by the impinging particle, the total scattering
wavefunction can be expanded in terms of asymptotic tar-
get rotational and vibrational eigenfunctions

Hmol(R)χν(R)Yjmj(R̂) =

[εν +
�

2

2I
j(j + 1)]χν(R)Yjmj(R̂) (1)

εν being the vibrational eigenvalue, I the isolated molecule
moment of inertia [13] (R̂) the space orientation of the
molecular bond and R the varying intermolecular dis-
tance. Hence, the total scattering wavefunction is given as

Ψn(E, re,R) =
∑

f

ui→f (re, E)χf (R)Yf (R̂) (2)

where |f〉 denotes the |ν′j′mj′〉 final states of the vibrat-
ing molecule that are involved in the expansion and the
ui→f (re, E) are the channel components of the scatter-
ing wavefunction which have to be determined by solving
the usual Schrödinger equation subject to its scattering
boundary conditions, with re being the scattered electron

vector position from the molecular center of mass (c.o.m.)

ui→f (re) → δifh(−)(re) − Sifh(+)(re) (3)
as (re) ∼ ∞

here h(±)(re) is a pair or linearly independent free partial
solutions defined as

h
(±)
if ∼ δifk

−1/2
i exp [i(kir ± liπ/2)] . (4)

When they are chosen to be appropriate Riccati-Hankel
functions, then the Sif coefficients become the elements of
the reduced scattering matrix, often additionally labelled
by the total angular momentum of the system: J = j + l,
the latter l being the continuum electron partial-wave
component. Usually, one expects that the numerically con-
verged scattering observables can be obtained by retaining
only a limited number of discrete, asymptotic target states
in the expansion (2). The ui→f are therefore expanded in
products of total angular momentum eigenfunctions and
of radial functions ϕJ

λλ′ (E, re), where J is the magnitude
of the total angular momentum and, λ′ = (j′, l′). The ra-
dial functions are in turn solutions of the familiar set of
coupled, second order homogeneous differential equations
(in the case of local interactions) [13,14]

[
d2

dr2
e

I2 − 1
r2
e

l2 + K2
ν

]
ΦJ

ν (E, re) =
∑

ν′
UJ

νν′ΦJ
ν′(E, re)

(5)
where I is the unit matrix, ΦJ is the matrix of radial
functions and

(l2)λλ′ = l′(l′ + 1)δλλ′ (6)

(K2
ν)λλ′ = k2

jνδλλ′ = (2/�
2)(E − Ejν)δλλ′ (7)

(UJ
νν′ (re))λλ′ =

∑

L

fL(lj; l′j′; J)〈χν |VL(re)(R)|χν′〉 (8)

where the fL(lj; l′j′; J) are the well-known, real coeffi-
cients of Percival and Seaton [6,9] and the coupling be-
tween the asymptotic (diabatic) target states is given by
the radial matrix elements of equation (8), which we shall
discuss in detail in the next section. As is well-known,
the direct coupling between rotational levels will be con-
trolled by the largest multipolar coupling VL included in
equation (8). The corresponding vibrational couplings will
involve the strength of the VL terms over the internu-
clear variable and convoluted over several (ν, ν′) vibra-
tional asymptotic states and gives rise to diagonal and off-
diagonal coupling terms: V νν′

L (re) in equation (8), where
the χν(R) are the target asymptotic vibrational wavefunc-
tions.

The number of channels to be included in the expan-
sion for equation (4) obviously depends on the system and
on the collision energy. Furthermore, for each selected col-
lision energy it also depends on the region of interaction
that is being sampled during the search for the channel
eigenfunctions. In the short-range regions, which corre-
spond to the strongest interactions, one should include
all those channels which become locally open because of
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the attractive features of the given interaction (and which
would be asymptotically closed, at least some of them).
Their number could be very large in the present situations
where the Coulomb interaction is the strongest over the
nuclear cusp regions. On the other hand, in the weaker
asymptotic region for re ∼ ∞, only a few of the open
channels will be needed. In between these two extreme
situations there is a region of interaction where the closed
channels change their importance with distance and there-
fore could be varied in number accordingly. Just to treat
such demanding interaction forces during an exact quan-
tum dynamics, we have recently developed [13] a suitable
numerical algorithm that judiciously performs the con-
trols along the radial evaluation process and modifies the
size of the relevant S-matrix. We have called it the Modi-
fied Variable Phase Approximation (MVPA) and have em-
ployed it in the present case to solve the set of coupled
equations (4). The gain in the computational effort can
be of about two orders of magnitude with respect to more
conventional methods [13].

Typically, for numerical convergence we needed to use
the full coupling from about 10−5 Å (the initial integra-
tion point) out to 4.0 Å, then we could gradually reduce
the K-matrix size out to 400 Å over a step of 0.002 Å for
a total of 5000 steps. The total angular momentum values
went up to 3 while the target rotational basis was extended
up to 16: the rotational constant of the former target was
taken to be 60.853 cm−1. The multipolar coefficients of
the potential expansion went up to λmax = 18 for the hy-
drogen target and the corresponding partial-wave angular
momenta for the scattered electron therefore went up to
lmax = 21. The number of vibrational levels included in
the expansion was of five levels up to νmax = 4. The in-
tegration over the internuclear coordinate of the coupling
matrix elements of equation (8) run from Rmin = 0.5ao up
to Rmax = 3.6ao, covering a range of 6 vibrational levels;
the latters were obtained by numerical integration over the
potential energy curve using the program level [15]. The
above parameters produce convergence of the S-matrix el-
ements of the order of about 10−3–10−4 with respect to
further extensions of the CC parameters indicated above.
To our knowledge, such stringent convergence tests on SF
inelastic observables for the present system has not been
reported before. We will show in a later section a set of
actual examples for such convergence tests.

2.2 The electron-molecule interaction

2.2.1 The single center expansion

Resonant and non-resonant low-energy scattering of elec-
trons from polyatomic targets can be studied theoretically
(and computationally) at various levels of sophistication
for the description of: (i) the electronuclear structure of
the target molecule, (ii) the interaction forces between the
bound particles and the impinging electron and (iii) the
dynamical formulation of the quantum scattering equa-
tions.

We employ an ab initio, parameter-free approach
which starts with the target nuclei varying their inter-
nuclear distance over a preselected range of values (see
preceding section). Furthermore, the target of N -electrons
is in a specific molecular electronic state (which, for the
present purpose, is taken to be the ground state) and
is described using the Hartree-Fock, Self-Consistent Field
(SCF) approximation via the Single-Determinant (SD) de-
scription of its N/2 occupied Molecular Orbitals (MOs).
In our implementation of the scattering equations the
occupied MOs of the targets are again expanded on a
set of symmetry-adapted angular functions with their
corresponding radial coefficients represented on a nu-
merical grid [16]. In this approach, any arbitrary three-
dimensional function describing a given electron, either
one of the N bound electrons or the scattering electron,
is expanded around a single-center (SCE) usually taken
to be the c.o.m. of the global (N + 1) electron molecular
structure

F pµ(r, r̂|R) =
∑

l,h

r−1fpµ
lh (r|R)Xpµ

lh (r̂). (9)

The above SCE representation refers here to the µth el-
ement of the pth irreducible representation (IR) of the
point group of the molecule at the nuclear geometry R.
The angular functions Xpµ

lh (r̂) are symmetry adapted an-
gular functions given by proper combination of spherical
harmonics Ylm(r̂)

Xpµ
lh (r̂) =

∑

m

bpµ
lmhYlm(r̂). (10)

The details about the computation of the bpµ
lmh have been

given by us before and will not be repeated here [17,18].

2.2.2 The anisotropic potential

For a target which has a closed-shell electronic struc-
ture with nocc doubly occupied orbitals ϕi, its interac-
tion with a scattering electron as first given by its Exact
Static+Exchange contributions

VESE(r) =
M∑

k=1

−Zk

|r − Rk| +
nocc∑

i=1

(2Ĵi − K̂i) (11)

where Ĵi and K̂i are the usual local static potential and the
non-local exchange potential operators, respectively. The
index k labels one of the M nuclei located at the coordi-
nate Rk in the c.o.m., molecular frame of reference (MF).
Electron-molecule scattering cross-sections (integral and
differential) which are computed using only the VESE po-
tential show in general limited agreement with experimen-
tal data of elastic scattering and become even worse when
dealing with resonant scattering. The reason lies in its
lack of description of the target response, i.e. of the ef-
fects of long-range polarization of the bound electrons by
the charged projectile and of the short-range dynamical
correlation between the latter and the molecular electrons.
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At higher collision energies this is reflected in the fact
that no electronically inelastic processes can be treated at
the ESE level of interaction. At the lower energy, of more
direct interest in the present study, the lack of inclusion
of the target response leads to the neglect of important
polarization effects which then causes the wrong energy
behaviour and magnitude of the elastic cross-sections and
which further significantly shifts positions and widths of
the shape resonances, if existing. For the case of poly-
atomic targets we have developed over the years a model,
nonempirical treatment of both exchange and correlation
forces [17–22] which markedly reduces the computational
effort while however producing very good accord with
available experimental cross-sections [19–23]. It is that de-
scription of the full electron-molecule interaction which we
adopt in the present study of a simple diatomic target.

To further include in the electron-molecule potential
the long-range polarization terms and the short-range dy-
namical correlation effects, we have implemented a lo-
cal energy-independent model potential, Vecp(r), discussed
in our earlier work [23]. Briefly, the Vecp potential con-
tains a short-range correlation contribution, Vcorr, which
is smoothly connected to a long-range polarization contri-
bution, Vpol, both terms being specific for electron projec-
tiles. The short-range term is obtained by finding where
the two radial coefficients for l = 0 first intersect. This
has been, in fact, what we found in many cases to be the
more effective choice in terms of the global smoothness of
the total potential [23]. Hence, one writes down the full
potential as

Vecp(re|R) =





Vcorr(re|R) re ≤ rmatch

Vpol(re|R) +
∑

lm

Clm r−λ Ylm(r̂e) re > rmatch
(12)

The Clm coefficients have been determined to make the
potential continuous at rmatch and the exponent λ is a
function of l such that: λ(l) = 6, 5, 6 for l = 0, 1, 2 and
λ(l) = l + 2 for l ≥ 3. The matching functions are chosen
in a way in which each term added to Vpol after rmatch

has the same functional form of the first term neglected
in the perturbation expansion of Vpol. The present val-
ues of rmatch for l = 0 are around 4.0ao for H2 and vary
depending on the internuclear coordinate values. This in-
teraction now corresponds to solving our the scattering
equations using Static-Exchange-Correlation-Polarization
(SECP) potentials.

The polarization term contains the spherical and non-
spherical parts of the diatomic dipole polarisabilities:

V
(o)
pol (R) = −αo(R)

2r4
e

; and

V
(2)
pol (R) = −α2(R)

2r4
e

P2[cos(r̂e · R̂)] (13)

for the H2(R) the α0 was varied over the range of in-
ternuclear distances that are relevant to the number of

coupled asymptotic vibrational levels. At the equilibrium
geometries our computed values were αxx = 4.55a3

o and
αzz = 6.31a3

o, to be compared with the experimental val-
ues [12] of αexpt

xx = 4.748a3
o and αexpt

zz = 6.783a3
o. We

have (somewhat arbitrary) scaled the radial dependence
of the polarisability terms computed by us to reproduce
the experimental values at Req, thus constructing a re-
alistic long-range polarization potential over the required
range of nuclear geometries to be included in the coupling
integrals of equation (8).

One could, of course, employ better molecular wave-
functions in order to obtain from them better values for
their dipole polarisabilities, However, since both short-
range and long-range polarization effects are added to the
interaction after the static potential is produced from the
chosen target electronic density, we feel that one achieves
the same result which could be given by a better basis set
by simply scaling asymptotically the added correlation-
polarization terms. The full SECP interaction was then
rewritten using the familiar multipolar expansion in the
Space-Frame (SF) reference system of its Jacobi coordi-
nates

VSECP (re′ |R) =
Lmax∑

L=0, even

V SECP
L (re|R)PL[cos(r̂e · R̂)] (14)

The individual multipolar coefficients were then fitted
with spline functions and the expansions extended up to
the Lmax values mentioned in Section 1. A pictorial ex-
ample of the lowest multipolar coefficients (L = 0) for the
H2 molecule is shown in Figure 1, as a function of the
internuclear values.

One clearly sees in both panels the presence of strong
nuclear cusps associated to the nuclear attraction term
in the static interaction. One further sees that the
bond stretching motion markedly broadens the region of
electron-molecule short-range interaction where the vibra-
tional couplings are indeed acting the most strongly.

Such an effect is clearly exemplified by the calcula-
tions reported in Figure 2, where we have performed the
convolution of the potential terms of Figure 1 over the vi-
brational wavefunctions of the ν = 0 and ν = 1 levels of
H2 calculated as described in the previous section.

It is interesting to see from the figure that the tar-
get deformation induced by the incoming electron is re-
ally highly localized within the short range region, where
the target electronic cloud penetration by the impinging
charge is the strongest: by the time the incoming projec-
tile is beyond about 2.0a0 away from the target c.o.m., the
strength of the coupling is seen to be reduced by nearly
five orders of magnitude. Thus, we expect that a very low
collision energies only the lower angular momenta will be
able to access that region and significantly contribute to
the excitation process.

Another interesting feature of the present interaction
that is worth mentioning, as a numerical check of our cal-
culations, could be gleaned from the results we present
in Figure 3. What we report there is a comparison, for
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Fig. 1. Computed multipolar coefficients of the interaction in
the short-range region from the molecular center-of-mass. Top
panel: spherical multipolar terms; lower panel: L = 2 multipo-
lar coefficients. The radial values in the panels report (in units
of a0) the distances of each H atom from the c.o.m.

the lowest two multipolar coupling potential terms, of the
rigid-rotor interaction where the target molecule is kept at
its equilibrium geometry, Req, (solid lines) and the diago-
nal coupling potential after convolution over the numeri-
cal ground state vibrational wavefunction, χ0(R) (broken
lines). We clearly see that the averaging reproduces very
well the Rigid-Rotor interaction, indicating that in such
a system the departure from anharmonicity at ν = 0 is
really rather small and therefore averages correctly to the
potential where no distortion is being considered. The re-
sult also confirms the numerical reliability of both our
computed wavefunctions and coupling vibrational poten-
tial terms.

Such analysis have been obviously carried out many
times in the past (e.g. see Ref. [24]), but the present revis-
itation is solely meant to confirm the numerical reliabil-
ity of the present approach and not its novelty of results:
it simply serves us to establish the level of quality of the
model potential employed in the present calculations in or-
der to be able to extend its usage down to near-threshold
energies, i.e. to processes induced by “cold” electrons.

3 The scattering results

3.1 “Tuning” the model exchange

As discussed in the previous section, we have modeled the
all-important exchange interaction using a local form that
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Fig. 2. Computed vibrational coupling matrix elements be-
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of the interaction potentials obtained for the rigid rotor target
(solid lines) and the adiabatic average over the ground vibra-
tional state of H2 (dashed lines).



276 The European Physical Journal D

has been used many times to simplify calculations [21]

V HFEGE
ex (re|R) =

2
α

kF (re)
[
1
2

+
(

1 − η2

4η

)
ln|1 + η

1 − η
|
]

(15)

where:

kF (re) = [3π2ρ(re)]1/2;

η(re) = (k2 + 2If + k2
F )1/2/kF (16)

the parameter appearing in the above model potential
is the quantity If , the ionization potential of the target
molecule. In the present case, the experimental If value is
0.56 a.u. [9]. Since we are therefore expected to know the
If values over the range of internuclear distances that con-
tribute to the vibrationally inelastic processes, and since
we are not aware of any experimental determination of
it for different molecular geometries (i.e. for vibrationally
‘hot’ targets), we decided to treat If as a “tuning” pa-
rameter for the elastic scattering process in calculations
where the sum over the index |f〉 on the r.h.s. of Eq. (5)
collapses to f = |νo〉), making use of a comparison be-
tween such vibrationally elastic calculations and exper-
iments that show rotational inelasticity only. In other
words, we are “tuning” the If values by computing vi-
brationally elastic cross-sections for the target ground vi-
brational state. One should note here that, although this
local modeling of the exchange potential is numerically
convenient for an SF treatment of the dynamics, it does
not reproduce accurately the scattering of electrons near
the low-energy thresholds. Hence, we employ the above
adjustable parameters to overcome such deficiencies and
to obtain the best agreement with available vibrationally
elastic cross-sections. This value of the If parameter is
then used without further adjustment to study inelastic
processes.

One first set of results are reported in Figure 4, where
we show our computed elastic (v = 0, j = 0 → v′ = 0,
j = 0) integral cross-sections (solid line) with the adjusted
If value that best reproduced the reported experiments
(If = 0.24 a.u.): one clearly sees that the overall agree-
ment, at the energies considered, is rather good. The ex-
perimental data are over a large number of years and are
listed in the caption of Figure 4.

In order to further test the efficiency of the “tuning”
procedure and to be able to employ one single value at all
geometries, we have further computed the rotationally in-
elastic partial cross-sections by using the required V νν′

L (re)
potential coefficients in equation (5), as defined in equa-
tion (8). The results are shown in Figure 5, where we re-
port in the upper panel the partial inelastic cross-section
(solid line) for the (j = 0 → j′ = 2) excitation process in
comparison with available experiments. The lower panel
in the same figure reports the partial cross-sections for the
(j = 2 → j′ = 4) inelastic cross-sections: both sets of cal-
culations have used the same “tuned” value of If as that
used for the calculations in Figure 4.

We see that both sets of calculations are reproduc-
ing the rotationally inelastic cross-sections reasonably well
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Fig. 4. Computed and measured integral elastic partial cross-
sections (v = 0, j = 0 → v′ = 0, j′ = 0) in comparison with ex-
isting experimental data: solid circles: from reference [24]; solid
up triangles: from reference [25]; crosses: from reference [27];
stars: from reference [28]; solid down triangles: from refer-
ence [29].
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Fig. 5. Computed and measured partial, vibrationally elas-
tic cross-sections for the (0→2) (upper panel) and the (2→4)
(lower panel) rotational excitations of H2 by electron impact.
The experiments are, in the upper panel: filled circles from
reference [30]; filled squares from reference [31]; filled lozenges
from reference [32]. In the lower panel: filled circles from ref-
erence [32]. The vibrational state included was the v = 0 state
only.

and thus we could use that value of If for the further cal-
culations of the vibrationally inelastic cross-sections ob-
tained as summed over all rotational excitations processes.
The outcome of such calculations will be discussed in the
following section.
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Fig. 6. Computed and measured partial inelastic cross-sections
for the (0→1) vibrational excitation of H2. The upper panel
refers to the comparison of our present calculations (solid line)
with the available experiments, while the lower panel compares
present results (solid line) with other theoretical work. All the
references are given below: filled circles = reference [37], open
circles = reference [36], open triangles = reference [39], open
diamonds = reference [40], lower triangles = reference [41],
crosses = reference [31], filled diamonds = reference [43], filled
squares = reference [42]. Lower panel: dots = reference [37],
dot-dashes = reference [35], dash-dash-dots = reference [34],
dot-dashes = reference [33], dot-dot-dashes = reference [44].

3.2 The vibrationally inelastic cross-sections

There have been several experimental measurements on
the e−−H2 vibrational excitation processes, as well as the-
oretical evaluations by several authors. In Figure 6 we re-
port in the top panel the inelastic partial cross-sections for
the (ν = 0 → 1) excitation in comparison with the experi-
mental data (the corresponding references are given in the
figure caption). The present calculations are indeed follow-
ing the experiments very closely over the whole range of
energies and appear to perform very well at those low ener-
gies above threshold where adiabatic methods are usually
failing.

It is certainly reassuring to see how well the present
calculations are able to reproduce experiments and also
earlier calculations for that transition process. A similar
comparison for the (0→2) excitation cross-section is re-
ported by Figure 7, where only one experimental evalua-
tion has been found. Our calculations (solid line) are doing
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Fig. 7. Computed and measured vibrationally inelastic cross-
sections for the (0→2) process. The solid line shows the present
results while the dots refer to calculations from reference [44],
the dashes are the calculations from reference [35] and the filled
circles are experiments from reference [36]. The dot-dashed re-
sults are calculations from reference [33].

again rather well, especially close to threshold and up to
about 2 eV above it. One sees however that our computed
values are larger than experiments around the broad reso-
nance and match them again very well beyond the latter.
In general, we see that the delicate region at threshold is
well reproduced by the present, exact calculations with a
model potential. As one enters the broad resonance region,
around 4 eV, however, one sees that our computed values
increase with energy faster than the experiments and peak
at a lower energy than the latter data. Such a discrepancy
could be due to the use of a model exchange interaction
since we are probing that collision energy range where the
exciting electron begins to penetrate more deeply the tar-
get charge distribution and therefore the “tail” features
of an essentially short-range interaction like exchange be-
come important. It is still reassuring, however, to see that
both the (0→1) and (0→2) excitation cross-sections ob-
tained here follow closely existing experiments and earlier
calculations. For simplicity of presentation, we have omit-
ted to explicitly report the calculations of Lee and Mazon
[45], which coincide with the results (quoted in Fig. 6) of
reference [33], and the earlier experimental data of Allan
of reference [46].

In order to numerically test the level of convergence
that we have achieved with the present calculations, we
report in Table 1 the results for such tests. We show there,
in the top panel, the vibrationally elastic (rotationally
summed) cross-section values as a function of Vλmax , the
highest multipolar term included in the interaction poten-
tial of equation (8). The next panel below the latter shows
the numerical convergence of the same type of the elastic
cross-sections as a function of the number of rotational
states included by the Coupled Channel expansion of the
scattering equations (5), while the third panel below the
latter is reporting the same convergence test but on the
number of vibrational states being included by the CC ex-
pansion. Finally, the last panel at the bottom of the table
shows the convergence efficiency on the inelastic processes,
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Table 1. Computed vibrational cross-sections as a function
of selected convergence parameters (all values in Å2). The re-
sults are shown at two different energies: E1(=1.0 meV) and
E2(=6.0 eV).

E1 E2

Vλmax σ(0 → 0) Vλmax σ(0 → 0)

1 11.880 1 13.728
2 8.528 2 13.752
3 8.009 3 13.718
4 7.887 4 13.711
5 7.887 5 13.709
6 7.861 6 13.707
7 7.834 7 13.707
8 7.823 8 13.706
9 7.825 9 13.705
10 7.820 10 13.704
jmax σ(0 → 0) jmax σ(0 → 0)
2 8.376 2 13.857
4 7.964 4 13.726
6 7.872 6 13.744
8 7.840 8 13.714
10 7.832 10 13.699
12 7.826 12 13.708
14 7.820 14 13.707
16 7.818 16 13.706
18 7.820 18 13.704
νmax σ(0 → 0) νmax σ(0 → 0)
1 7.818 1 13.706
2 7.485 2 13.609
3 7.567 3 13.325
4 7.555 4 13.321
νmax σ(1 → 0) νmax σ(0 → 1)
2 2.858 2 0.0853
3 2.745 3 0.3227
4 2.748 4 0.3232

σ(1 → 0) and σ(0 → 1), respectively. The latter quantities
also correspond to rotationally summed results. It is clear
from the data in the table that our level of convergence
(shown for two energy values but actually tested by us
for many more energies) is better than 0.1% for the cases
examined.

3.3 The very-low energy inelastic processes

As mentioned in the foregoing discussion, the above cal-
culations over the energy range we have examined do not
necessarily require the further complication of using an SF
representation of the dynamics, a point often discussed in
the existing literature (e.g. see Ref. [24]). However, when
one needs to move down in energy and close to the thresh-
old openings then the correct dynamical frame needs to be
employed. Thus the use of the full coupled-channel treat-
ment for the results of the previous section was chiefly
meant as a test of the reliability of the present approach.
Its extension down to the meV range, however, has as a
mandatory requirement the use of the correct SF angu-
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Fig. 8. Computed vibrational superelastic cross-sections be-
tween the |v = 1, j = 0〉 and |v′ = 0, j′〉 levels of H2 at two
different collision energies. See text for details.

lar momentum coupling that we have implemented in the
present analysis.

The interest in “cold” electrons dynamics has
markedly increased in recent years, due to a variety of
experiments on molecular gas [47,48] and therefore any
theoretical study of inelastic processes at such low ener-
gies requires SF dynamics.

As an example of what can be obtained with a fully
converged calculation, we report in Figure 8 the behavior
of the superelastic collisions for the vibrationally excited
(v = 1) molecular target as a function of the final rota-
tional level, having assumed to start in the |v = 1, j = 0〉
rotovibrational H2 state. Two different collision energies
are given in the panels: 10 µeV in the upper panels and
10 meV in the lower panel. The results shown by Figure 9
refer to the same type of processes by starting with the
molecule in its |v = 1, j = 10〉 state.

The upper left panels report the largest collisional su-
perelastic cross-sections, i.e. the ∆j=0 process, plus the
ones where partial rotational excitation occurs into the
next level, while the right upper panels reports, on a log
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Fig. 9. Same as in Figure 8 but for the target molecule chosen
to be in the |v = 0, j = 10〉 initial state.

scale, also the other partial cross-sections into a higher j′
values.

One clearly sees from the figures that the ∆j = 0 and
∆j = +2 cross-sections dominate the spectrum while the
other cross-section is orders of magnitude smaller and the
higher j′ ones are not even visible in the figure. Further-
more, over the energy changing of three orders of magni-
tude between upper and lower panels in each figure the
corresponding cross-sections are also quite different and
appear to be getting closer to following the linear Wigner’s
regime [49] of exponential increase with decreasing colli-
sion energy already observed by us with ionic partners
[50]. We also see that even at the lowest energies consid-
ered the inelastic processes still remain sizeable in spite
of the expected inefficiency of the light electron to excite
vibrations in a strong bond like that of H2. This finding
should be important for the analysis of the size of the ob-
served total cross-section as the collision energies go to
zero. We shall discuss further aspects of the very-low en-
ergy regimes in our work currently in preparation [49].

4 Present conclusions

In this work we have revisited the computation of vibra-
tionally inelastic, partial integral cross-sections of gaseous
H2 by collision with slow electrons, examining the range
of energies from thresholds up to a few eV above them.
The quantum treatment of the dynamics has been car-
ried out entirely in the laboratory reference frame and the
coupled-channel equations were employed with a rigorous
inclusion of all the rotovibrational target states required
to reach convergence of cross-section values around 10−5.
The interaction forces have been modelled in local form
and the exchange interaction has been included via the
Hara’s FEGE model [19]. In order to describe the depen-
dence of such a model on the internuclear motion during
the excitation process, we have treated the If parameter of
equation (16) as a disposable quantity, adjusting it to re-
produce the vibrationally elastic cross-sections (rotation-
ally elastic and inelastic) given by experiments. The value
obtained has then been employed to treat vibrational in-
elasticity, producing final cross-sections in excellent accord
with existing experiments.

Given the complexity of solving a large number of
coupled equations, we feel that our present Modified Vari-
able Phase Approximation [11] provides a robust com-
putational tool that allows us to reach convergent cross-
sections with a marked reduction of computational time.

The method has been further shown by the present nu-
merical “experiments” to be able to describe well electron
collisions on H2 that cause rotovibrational excitations of
the target in the energy regions where experiments ex-
ist. Thus, we feel our present modelling of the interaction
forces could also be profitably extended to other diatomics
by using similar forms of the forces at play [41,42].

As a preliminary example, we have shown the behavior
of the de-excitation cross-sections as a function of final
rotational state and for two, very low collision energies.

We therefore think that the SF approach should be the
method of choice for generating quantum inelastic cross-
sections at very low energies which are close to their rele-
vant thresholds and which do play a very important role
for the interpretation of the variety experiments carried
out with cold electron beams [51,52] Such quantities also
involve nonlinear polyatomic gases, a rather straightfor-
ward extension within our present computational scheme,
and are of further interest when the considered collision
energies go down to the µeV range, thus becoming rel-
evant for the study of molecular collisions in cold traps
[53]: all such extensions of the present work are rather
simple ones in terms of computational modifications of
our present quantum code and will be the object of future
studies [54].

The financial support of the Research Committee of the Uni-
versity of Rome “La Sapienza”, of the CASPUR Supercomput-
ing Center and of the EPIC EU Research Training Network are
gratefully acknowledged. One of us (S.T.) further thanks the
EPIC Network (HPRN-CT-2002-00179) for the award of a Re-
search Fellowship to the University of Rome during the year
2003.



280 The European Physical Journal D

References

1. e.g. see: Adv. At. Mol. Opt. Phys., edited by B. Bederson,
H. Walthers (Academic Press, New York, 1994)

2. Electron Molecule Collisions, edited by I. Shimamura, K.
Takayanagi (Plenum Press, New York, 1994)

3. Electron Collisions with Molecules, Clusters, Surfaces,
edited by H. Ehrhardt, L.A. Morgan (Plenum Press, New
York, 1994)

4. S. Trajman, D.F. Register, A. Chutjian, Phys. Rep. 97,
219 (1983)

5. A. Zecca, G.P. Karwasz, R.S. Brusa, Nuovo Cim. 19, 1
(1996)

6. e.g. see: Computational Methods for Electron-Molecule
Collisions, edited by W.M. Huo, F.A. Gianturco (Plenum
Press, New York, 1995)

7. J.W. Mc Conkey, S. Trajmar, G.C.M. King, Comm. At.
Mol. Phys. 22, 17 (1988)

8. H. Tawara, I. Ytikawa, H. Nishimura, M. Yoshino, J. Phys.
Chem. Res. Data 19, 617 (1990)

9. M.A. Morrison, R.W. Crompton, B.C. Saha, Z.L. Petrovic,
Aust. J. Phys. 40, 239 (1987)

10. M.J. Brunger, S.J. Buckman, Phys. Rep. 357, 215 (2002)
11. D. Field, S.L. Lunt, J.-P. Ziesel, Acc. Chem. Res. 34, 2186

(1999)
12. D. Field, C.N. Jones, S.L. Lunt, J.-P. Ziesel, Phys. Rev. A

60, 291 (2001)
13. E. Bodo, R. Martinazzo, F.A. Gianturco, Comp. Phys.

Comm. 151, 187 (2003)
14. F. Calogero, Variable Phase Approach to Potential

Scattering (Academic, New York, 1967)
15. R.J. Le Roy, Level 7.2, Chem. Phys. Res. Rep., CP-555R

(2000)
16. e.g. see: F.A. Gianturco, A. Jain, Phys. Rev. 143, 347

(1986)
17. F.A. Gianturco, R.R. Lucchese, N. Sanna, J. Chem. Phys.

100, 6464 (1994)
18. R. Curik, F.A. Gianturco, J. Phys. B 35, 1235 (2002)
19. R. Curik, F.A. Gianturco, N. Sanna, Int. J. Quant. Chem.

84, 565 (2001)
20. F.A. Gianturco, Ga. Kashenok, R.R. Lucchese, N. Sanna,

J. Chem. Phys. 116, 2811 (2002)
21. S. Hara, J. Phys. Soc. Jpn 22, 710 (1967)
22. F.A. Gianturco, J.A. Rodriguez-Ruiz, A. Jain, Phys. Rev.

A 48, 4321 (1993)
23. F.A. Gianturco, A. Jain, L. Pantano, J. Phys. B 20, 571

(1987)
24. M.A. Morrison, Adv. At. Mol. Phys. 24, 51 (1988)
25. I. Shimamura, Sc. Pap. Inst. Phys. Chem. Res. 82, 1 (1989)

26. J. Furst, M. Maghereften, D. Golden, Phys. Rev. A 30,
2256 (1984)

27. M.J. Bruger, S.J. Buckman, D.S. Newman, D.T. Alle, J.
Phys. B 24, 1435 (1991)

28. E. Golden, H.W. Bandel, J.A. Salerno, Phys. Rev. 146, 40
(1966)

29. C. Ramsauer, R. Kollath, Ann. Phys. 4, 91 (1929)
30. A.G. Robertson, M.T. Elford, R.W. Crompton, M.A.

Morrison, W. Sun, W.K. Trail, Aust. J. Phys. 50, 441
(1997)

31. A.G. Engelhard, A.V. Phelps, Phys. Rev. 131, 2115 (1963)
32. A.G. Engelhard, L.P. Elford, R.W. Crompton, J. Phys. B

61, 573 (1988)
33. H. Gao, Phys. Rev. A 45, 6895 (1992)
34. R.J.W. Henry, Phys. Rev. A 2, 1349 (1970)
35. S. Mazevet, M.A. Morrison, O. Boydstun, R.K. Nesbet,

Phys. Rev. B 32, 1269 (1999)
36. H. Ehrhardt, L. Langhans, F. Linder, H.S. Taylor, Phys.

Rev. 173, 222 (1968)
37. S.J. Buckman, M.J. Brunger, D.S. Newman, G. Snitchler,

S. Alton, D.W. Norcross, M.A. Morrison, B.C. Saha, G.
Danby, W.K. Trail, Phys. Rev. Lett. 65, 3253 (1990)

38. J.P. England, M.T. Elford, R.W. Crompton, Austr. J.
Phys. 41, 573 (1988)

39. F. Linder, H. Schmidt, Naturforsch. 26a, 1603 (1971)
40. N. Nishimura, A. Danjo, H. Sugahara, J. Phys. Soc. Jpb

54, 1757 (1985)
41. G.J. Schultz, Phys. Rev. 135, 988 (1964)
42. R.W. Crompton, D.K. Gibson, A.G. Robertson, Phys.

Rev. A 2, 1386 (1970)
43. P.D. Burrow, G.J. Schultz, Phys. Rev. 187, 97 (1969)
44. R.J.W. Henry, E.S. Chang, Phys. Rev. A 5, 276 (1972)
45. M.T. Lee, K.T. Mazon, Phys. Rev. A 65, 042720 (2002)
46. M. Allan, J. Phys. B 18, L451 (1985)
47. D. Field, N.C. Jones, J.-P. Ziesel, Phys. Rev. A 69, 052716

(2004)
48. N.C. Jones, D. Field, J.-P. Ziesel, T.A. Field, J. Chem.

Phys. 122, 07431 (2005)
49. E.P. Wigner, Phys. Rev. 72, 1002 (1948)
50. E. Bodo, F. Sebastianelli, E. Scifoni, F.A. Gianturco, A.

Dalgarno, Phys. Rev. Lett. 89, 283201 (2002)
51. D. Field, J.-P. Ziesel, S.L. Lunt, R. Parthasarathy, L.

Suess, S.B. Hill, F.B. Dunning, R.R. Lucchese, F.A.
Gianturco, J. Phys. B 34, 4371 (2001)

52. D. Field, N.C. Jones, S.L. Lunt, J.-P. Ziesel, Phys. Rev. A
64, 22708 (2001)

53. e.g. see: P. Pellegrini, O. Dulieu, F. Masnou-Seeuws, Eur.
Phys. J. D 20, 77 (2002)

54. S. Telega, F.A. Gianturco, in preparation


